Заземление молниезащиты
Заземление – это техническая система или комплекс мер, представляющие собой преднамеренное соединение зданий и электроустановок с землёй или её эквивалентом. Оно предназначено для снижения электрического напряжения прикосновения до значения, безопасного для человека. Главная цель устройства — защитить людей от поражения электрическим током, а электроустановки от повреждения. Меры по защите зданий, промышленного и бытового электрического оборудования предпринимаются в обязательном порядке. Защитное заземление позволяет исключить или снизить до минимума опасность травм и аварий.
Защитное заземление зданий многоэтажных домов, общественных, офисных и производственных строений имеет сложное устройство в силу их большого объёма и распределённости электрической схемы, оснащённости электроприборами и числа пользователей. Дополнительный фактор данного вида строительства заключается в том, что дома подвержены влиянию атмосферного электричества. В них необходимо провести монтаж заземления, чтобы обезопасить от прямого попадания либо вторичного воздействия молний. В таких случаях речь идёт о контурах заземления как части системы молниезащиты.
Назначение
Основное назначение – отведение электрического тока при помощи заземляющих шин и электродов оптимального сечения, перераспределение его в земляном грунте. Заземляющая схема осуществляет выравнивание потенциалов между установленными токоотводами и управление ими на территориях, где присутствуют люди. Защитное заземление является серьёзным фактором безопасности в быту и на производстве.
Основные показатели
Главный показатель, определяющий способность заземляющего устройства выполнять свои функции — сопротивление растеканию. Максимально допустимые значения удельных сопротивлений для устройства и сечения его элементов прописаны в нормативной документации. Параметры заземляющих элементов не должны нарушаться при проектировании, выборе материала для проводников (электродов) и последующем монтаже. Выбор заземляющих материалов и схемы монтажа зависит от ряда параметров, в том числе от сопротивления грунта.
Проектирование
Грамотные защитные мероприятия начинаются с качественного проекта. Проект должен учитывать особенности постройки дома и отвечать нормативным документам. Оптимальный вариант — когда заземляющие конструкции закладывается в момент общего проектирования дома или дачи. Тогда можно использовать внутренние элементы сооружения в качестве составляющих защитной заземляющей системы — это снизит стоимость монтажа заземления.
Компания «МЗК-Электро» выполняет расчет заземления, проектирование, сборку и обслуживание молниезащиты и элементов заземляющих контуров, в качестве составной части системы и отдельной услуги.
Заземление зданий и электроустановок различного напряжения сооружают по одному из трех типов: кольцевому, глубинному или фундаментному. Выбор вида контура и материалов для заземлителя для конкретного строения производится с учётом его размеров и назначения, возможностей и ограничений монтажа, степени насыщенности электрооборудованием и ряда других причин. При необходимости можно соединять между собой несколько систем заземления (с учетом риска возникновения коррозии). Любое заземление зданий необходимо соединить с шиной уравнивания потенциалов.
Кольцевое заземление дома
Устройство
Кольцевой тип заземлителя иначе называют поверхностным. Такой заземлитель представляет собой замкнутую металлическую кольцевую заземляющую шину, проложенную по периметру постройки. Не менее 80% его длины должно контактировать с грунтом. Как правило, заземляющий контур прокладывают ниже точки промерзания земляного грунта (около 0,5 метра), на расстоянии от защищаемого объекта не меньше 1 метра. Монтаж заземления в районах с высокой вероятностью возникновения коррозии требует использования заземлителя кольцевого типа из нержавеющей стали. В таких случаях от коррозии должны быть защищены также резьбовые соединения элементов, расположенные ниже поверхности земли.
Шины кольцевого заземлителя изготавливаются из следующих материалов:
- Горячеоцинкованная или нержавеющая сталь,
— плоский проводник, размер 40х4 мм,
— круглый проводник, сечением 10 мм, - Медь, круглый проводник, диаметром 8 мм.
Кольцевое заземление зданий является одним из самых эффективных видов устройства. Таким методом можно оборудовать дачи или загородные дома. Кольцевой контур из металла равномерно распределяет ток по периметру здания, а между токоотводами образуется равное напряжение. К недостаткам можно отнести только длительный и трудоемкий процесс монтажа.
Глубинный заземлитель
Устройство
Данный вид представляет собой несколько металлических стержней, вертикально погружённых в грунт на определенную глубину и соединённых с заземляющей шиной-контуром. Расчёт заземления и заглубления производится методом определения величины сопротивления.
Длина контура также зависит от характеристик грунта. Рекомендуется к каждому отдельному токоотводу заземляющего контура подсоединять один глубинный заземлитель длиной не менее 9 метров, прокладываемый на расстоянии не менее 1 метра от защищаемого объекта. По DIN V VDE V 0185 для категорий молниезащиты III и IV длина заземлителя должна составлять минимум 2,5 метра. Монтаж заземления производится с помощью бензо-, электро- или пневмомолотов (в зависимости от конкретного типа грунта). При оборудовании защиты в частном доме возможна установка заземляющих стержней вручную. Соединения, расположенные в земляном грунте, необходимо обезопасить от коррозии и подсоединить к шине уравнивания потенциалов.
Материалы для изготовления кольцевого контура:
- Оцинкованная или нержавеющая сталь,
— плоский проводник, размер 40х4 мм,
— круглый проводник, диаметр 20 мм, - Оцинкованная сталь, труба, сечением 25 мм,
Важным элементом глубинного заземления является модульно-штыревая система. При этом монтаж модульных заземлителей производится штырями (стержнями), заглубленными один за другим с помощью ударного электроинструмента. В отдельных случаях в процессе установки это позволяет достигать глубины более 30 метров. Основной фактор, влияющий на глубину укладки и количество стержневых заземлителей — удельное сопротивление грунта. Профессиональный расчет заземления позволит определить все параметры системы максимально точно.
Соединение между стержнями и шиной создаётся резьбовое или безрезьбовое. Площадь, которую занимают элементы схемы при производстве работ по устройству модульно-стержневого контура, минимальна. Это позволяет производить монтаж заземления даже в подвалах строений.
Модульный принцип устройства заземления является альтернативой классической схеме. Устройство по классическому принципу основано на том, что вертикальные стержни-заземлители сравнительно небольшой длины забиваются друг за другом по прямой линии или хаотично, с учётом расстояния для снижения экранирования.
Измерение сопротивления растеканию желательно производить по мере работы, после каждого вбитого штыревого элемента. К сожалению, при самостоятельном устройстве заземлителя в загородном коттедже или на даче аппаратура для измерения сопротивления растеканию, как правило, отсутствует, и заземляющая конструкция делается «на глаз». В общем случае число вертикальных заземлителей и длина горизонтального проводника зависят от искомого результата. При этом необходимо знать удельное сопротивление грунта. Соответственно, для грунта с большим удельным сопротивлением понадобится в несколько раз больше заземлителей.
Важнейшее преимущество глубинной системы — ее доступность и простота установки. Монтаж такого контура можно осуществить самостоятельно. Заземление зданий дачного типа чаще всего делают именно таким способом. К недостаткам этого варианта можно отнести несколько меньшую, по сравнению с другими типами заземлителей, эффективность устройства при обслуживании электроустановок.
Фундаментный заземлитель
Устройство
Фундаментный заземлитель размещается в железобетонном фундаменте сооружения. Этот тип контура задействуется в тех случаях, когда из фундамента выведены арматурные стержни для присоединения токоотводов. Электроды при монтаже устройства соединяют с арматурой, чаще всего резьбовым соединением или муфтой, на расстоянии около 3 метров. При этом запрещается использовать в грунте клинообразные зажимы. Для устройства фундаментного контура лучше всего применять ленточные держатели, установленные с интервалом в 2 метра. При монтаже заземляющего оборудования в районах с высокой вероятностью возникновения коррозии необходимо устанавливать фундаментный заземлитель из нержавеющей стали.
Материалы для изготовления фундаментных заземлителей:
- Горячеоцинкованная или нержавеющая сталь,
— плоский проводник, размер 40х4 мм,
— круглый проводник, сечением 10 мм, - Медь, круглый проводник, диаметр 8 мм.
К преимуществам фундаментного контура относится высокая экономичность и простота реализации, минимальное заглубление, отсутствие необходимости укладки дополнительных заземляющих шин. К сожалению, на этапе заливки железобетонного фундамента строители очень часто забывают как о молниезащите, так и о защитном заземлении в целом. По этой причине фундаментное заземление зданий используется реже остальных видов.
При выборе варианта реализации для промышленного здания, многоэтажного дома, загородного коттеджа, дачи или другого строительного объекта, включая кровлю, с любыми значениями напряжения, необходимо произвести точный расчёт заземления и правильно подобрать материалы. Лучше всего доверить работу по выбору, расчёту и монтажу систем электробезопасности грамотным специалистам, имеющим соответствующее образование и опыт работы.
Специалисты компании «МЗК-Электро» выполнят монтаж заземления быстро, квалифицированно и качественно, рационально использовав средства заказчика, рассчитав оптимальную схему и использовав надёжные заземляющие элементы из каталогов известных производителей.
Молниезащита зданий, сооружений, оборудования и коммуникаций
Атмосферные явления с образованием молний, сопровождаемых яркими вспышками света, громом, называют грозами. Молнии – это грозовые разряды электричества, возникающие между облаками и Землей; внутри облаков.
Попадание молнии в дом
Опасность для жизни людей, сохранности промышленных, общественных строений, высотных инженерных сооружений – дымовых труб, антенн телевидения, радиосвязи, включая сотовую; вышек, опор электрических сетей; технологического оборудования, расположенного на открытых промышленных площадках, например, для ректификационных колонн предприятий нефтепереработки представляют молнии первого типа.
Необходимость устройства молниезащиты связана с тем, что напряжение при грозовых разрядах достигает 50 млн. В, а сила тока – до 100 тыс. А; с выделением огромного количества световой, звуковой и тепловой энергии. Грозовые разряды являются электрическими взрывами, сходными с детонацией, наносящими разрушения строениям, ломающими деревья, послужившие им источниками заземления; травмируют, контузят людей, что нередко приводит к их гибели.
Молниезащитой называют комплекс технических решений, что надежно обеспечивают безопасность людей, предохранение строений различного назначения, высотных объектов; технологического, инженерного оборудования производственных объектов; коммуникаций инфраструктуры населенных пунктов, линий электропередач как от прямых ударов грозовых разрядов, электромагнитной, электростатической индукции, так и от передачи электротока через металлоконструкции, коммуникации.
Заземление и молниезащита – это то, чем согласно нормам должны быть оборудованы промышленные здания, инженерные коммуникации, а также другие объекты. Кроме того, пункт 4 статьи 50 Федерального закона РФ №123-ФЗ предписывает в качестве одного из способов исключения источников зажигания устраивать защиту от молний для зданий, оборудования для повышения уровня пожарной безопасности на объектах.
Нормы устройства молниезащиты
Учитывая, что строения, сооружения, технологические установки, коммуникации довольно сильно отличаются по своему устройству, исполнению разработаны государственные, ведомственные, корпоративные нормы; стандарты, правила проектирования для организации оптимальной, эффективной защиты от грозовых разрядов для каждого типа объектов – от производственных объектов, где она впервые стала применяться, до жилых домов.
В основе норм, что регламентируют создание технической защиты от молний, опыт организации электрической безопасности строений разного вида, назначения, с учетом особенностей, присущих современным постройкам, сооружениям и коммуникациям инфраструктуры, связи.
Требования к молниезащите изложены во многих официальных документах. Проектирование, расчет молниезащиты ведется на основании следующей нормативно-технической базы:
- «Правил устройства электроустановок». В настоящее время действует седьмое и некоторые главы шестого издания этого основополагающего документа, без знания требований которого невозможно проектирование любых видов, типов электрических установок, оборудования, аппаратуры защиты от поражения электротоком, включая молниезащиту. Промышленная безопасность защищаемых объектов с категориями по взрывопожарной опасности помещений, зданий также невозможна без этого вида защиты от высоковольтных разрядов электрического тока. Это учитывают требования по организации, исполнению молниезащиты для различных видов строений, инженерных сооружений, электрических коммуникаций, указанные в нескольких главах ПУЭ. Главы 2.4, 2.5 – для воздушных линий электропередач с рабочим напряжением меньше и больше 1 кВ соответственно, включая карту районирования территории России с указанием длительности гроз в году, что необходимо при проектировании систем, устройств молниезащиты. Глава 4.2 – для распределительных устройств, электрических подстанций напряжением больше 1 тыс. В. Глава 4.3 – для преобразовательных подстанций, установок. . Ее предназначение видно из названия. Несмотря на то что документ утвержден еще Министерством энергетики Советского Союза, по согласованию с Госстроем, он действует и сегодня.
- Некоторые ее положения неизбежно устарели, не успевая за научно-техническим прогрессом, поэтому при проектировании современных технических систем, устройств защиты от грозовых разрядов пользуются российскими ГОСТ, идентичными стандартам Международной электротехнической комиссии; а также отечественными инструкциями по молниезащите, вышедшими в свет позднее.
- Один из этих документов СО 153-34.21.122-2003, разработанный тем же коллективом ученых, регламентирует устройство молниезащиты как строений, так и инфраструктурных коммуникаций.
- ГОСТ Р МЭК 62305-1-2010, ГОСТ Р МЭК 62305-2-2010, представляющие собой две части одного национального стандарта о менеджменте рисков при защите объектов от грозовых разрядов. В первой части сформулированы общие принципы, во второй – методики оценки рисков гибели, получения травм от поражения электротоком людей; полного/частичного разрушения объектов, общественных коммуникаций; экономических потерь от попадания молний.
- Важно, что при этом рассматриваются такие факторы, как пожарная безопасность, так как в расчетах учитываются пространства с огнеопасной средой – воздушной смесью паров горючих жидкостей, газов, пыли.
- ГОСТ Р МЭК 62561.1-2014. Это первая часть национального стандарта об элементах систем защиты от молний, касающаяся требований к их частям, соединениям.
- ГОСТ Р МЭК 62561.2-2014 – к проводникам, электродам заземления.
- ГОСТ Р МЭК 62561.3-2014 – к распределительным разрядникам.
- ГОСТ Р МЭК 62561.4-2014 – к элементам крепления.
- ГОСТ Р МЭК 62561.5-2014 – к смотровым колодцам, уплотнителям электродов заземления.
Требования к проектированию, устройству заземления, защиты от молний электроустановок, оборудования зданий, линий электропередач в СССР также устанавливал СНиП 3.05.06-85 об электротехнических устройствах. Сегодня действует свод правил, выпущенный как его актуализированная версия – СП 76.13330.2016.
Помимо норм, действующих на территории РФ, следуют упомянуть сходные требования к системам защиты от грозовых зарядов, применяемые в союзных государствах. В Республике Казахстан – это СП РК 2.04-103-2013 об устройстве молниезащиты объектов, вышедший взамен аналогичной инструкции СН РК 2.04-29-2005; в Республике Беларусь – технический кодекс ТКП 336-2011 о защите от молний объектов, инженерных коммуникаций.
Тип зон молниезащиты
Под системами защиты от молний объектов, инженерных, коммуникаций и технологического оборудования понимают внешние и внутренние технические устройства, позволяющие защитить их как от прямого воздействия ударов молний, так и от вторичных воздействий – электрических, электромагнитных полей, сопровождающий грозовой разряд.
Различают активные и пассивные системы защиты от молний.
Пассивная, способная перехватить молнию до ее разряда на конструкции строительного объекта, корпуса оборудования или части инженерного, коммуникационного сооружения, и отвести заряд в землю, состоит из следующих элементов:
- Приемника молний.
- Молниеотводов.
- Заземляющих устройств.
В активной системе к этим неотъемлемым элементам добавляются устройства, генерирующие восходящий поток ионов, притягивающий к себе грозовой разряд.
Проектируются, монтируются несколько видов систем молниезащиты – стержневая, тросовая, которые по результатам проведенных расчетов, в зависимости от количества стержней/тросов, их расстановки/расположения, конфигурации площади защиты, могут создавать два типа зон молниезащиты:
- А. Степень надежности защиты – от 99, 5%.
- Б – от 95%.
Виды систем молниезащиты
На практике, если строительный объект, технологическая установка, вышка, столб, антенна инженерных коммуникаций полностью находится в зоне защиты от попадания молний, вероятность их поражения грозовым электрическим разрядом стремится к нулю.
Классификация зданий и сооружений по устройству молниезащиты
Существуют следующие категории молниезащиты строительных объектов, зависящие от назначения, значимости, класса пожарной опасности и возможности взрыва; пожарной нагрузки – наличия, количества, вида взрывопожароопасных материалов; региональной частотности грозовых разрядов; зафиксированных попаданий молний:
- I категория, имеющая наивысший уровень защиты от возможного прямого попадания молний в объект. Это производственные объекты с наличием взрывоопасных зон классов опасности В-I, II. Тип зоны защиты – А.
- II категория. Это здания производственного, складского назначения, открытые площадки как с хранением ЛВЖ, ГЖ, так и с установленным на них технологическим оборудованием, где они обращаются; а также взрывоопасные производства, наружные установки классом опасности ниже В-Iа. Тип зоны защиты для технологического оборудования, установленного на открытых промышленных площадках – Б; для объектов – А или Б в зависимости от прогнозируемого количества грозовых разрядов в год.
- III категория. К ней относятся строительные объекты различного назначения III–V степеней стойкости к огню в районах, где годовая продолжительность гроз больше 20 часов. Основной тип молниезащиты – Б.
Определить все основные параметры системы защиты от попадания молний для любого конкретного объекта можно по таблице 1 РД 34.21.122.
Виды молниезащиты
Система молниезащиты в зависимости от категории объектов может быть нескольких видов:
- Защищающая от прямых ударов. Устройства, используемые для этого, называют молниеотводами, состоящими из несущей опоры, в качестве которой может служить сам строительный объект, приемника разряда, токоотвода и заземлителя. Применяют как стержневые, тросовые молниеотводы, так и металлическую сетку, уложенную на кровлю защищаемого объекта. Для воздушных линий электропередач используют грозозащитные тросы, принимающие разряд молнии.
- От электростатической индукции. Осуществляется путем подсоединения всего электрооборудования к системе заземления объекта.
- От электромагнитной индукции. Для этого в местах соединений устраиваются токопроводящие перемычки между участками трубопроводов, эстакад.
- От заноса электрического потенциала, вызванного грозовым разрядом. Для этого все входящие в здания, сооружения коммуникации, включая металлическую оболочку электрических кабелей напряжением до 1 тыс. В, заземляются. Воздушные линии электропередач на подходах к объекту оборудуют грозозащитными тросами, а на опорах монтируют разрядники, ограничители перенапряжения.
Средства и способы молниезащиты
К средствам защиты от грозовых разрядов электричества относят:
- стержневые приемники молний;
- грозозащитные тросы;
- сетчатые молниеприемники;
- токоотводы;
- контуры заземления строительных объектов.
Варианты исполнения молниезащиты бывают двух видов:
- Внешний, защищающий от прямого воздействия высокопотенциального электрического разряда, способного вызвать разрушения, взрывы и пожары, за счет его отвода в землю для рассеивания энергии.
- Внутренний. Для защиты от вторичных факторов прямого или близкого к защищаемому объекту удара молнии. Для этого используют различные типы специальных приборов, называемых УЗИП – устройствами защиты от импульсных перенапряжений.
Установка молниезащиты, испытание молниезащиты по окончании монтажных работ производится организациями, выполняющими электротехнические работы.
Эксплуатация молниезащиты не требует дополнительных затрат, рассчитана на длительный период. Но, осмотр молниезащиты на предмет обнаружения механических повреждений приемников разряда, токоотводящих, заземляющих элементов, связей между ними все же обязателен.
Проверка молниезащиты позволяет собственникам объектов, руководству предприятий, организаций быть уверенными, что она не подведет в опасный грозовой период.
Заземление. Что это такое и как его сделать (часть 1)
В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.
Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.
Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.
Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.
Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.
1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.
А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления
А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.
Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.
На рисунке оно показано толстыми красными линиями:
Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).
Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.
На рисунке он показан толстыми красными линиями:
Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).
Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).
Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)
Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
На рисунке они показаны толстыми красными линиями:
Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.
Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.
На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:
Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.
Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).
Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.
Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).
Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.
- в составе внешней молниезащитной системы в виде заземленного молниеприёмника
- в составе системы защиты от импульсного перенапряжения
- в составе электросети объекта
Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.
Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.
Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).
Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.
Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.
Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.
Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.
Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.
При достижении этого порога внутри разрядника возникает разряд между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).
Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.
Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.
Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.
Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.
Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.
В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).
В1. Факторы, влияющие на качество заземления
- площадь ( S ) электрического контакта заземлителя с грунтом
- электрическое сопротивление ( R ) самого грунта, в котором находятся электроды
В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)
Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.
В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.
Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.
(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).
Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.
В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.
- для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
- при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
- для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
- у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
- у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п.
- для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
- при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
- при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.
Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.
Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.
Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.
В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.
Источник https://www.mzke.ru/ground.html
Источник https://fireman.club/statyi-polzovateley/molniezashhita-zdaniy-sooruzheniy-oborudovaniya-i-kommunikatsiy/
Источник https://habr.com/ru/post/144464/